A fuzzy adaptive turbulent particle swarm optimisation
نویسندگان
چکیده
Particle Swarm Optimisation (PSO) algorithm is a stochastic search technique, which has exhibited good performance across a wide range of applications. However, very often for multimodal problems involving high dimensions, the algorithm tends to suffer from premature convergence. Analysis of the behaviour of the particle swarm model reveals that such premature convergence is mainly due to the decrease of velocity of particles in the search space that leads to a total implosion and ultimately fitness stagnation of the swarm. This paper introduces Turbulence in the Particle Swarm Optimisation (TPSO) algorithm to overcome the problem of stagnation. The algorithm uses a minimum velocity threshold to control the velocity of particles. The parameter, minimum velocity threshold of the particles is tuned adaptively by a fuzzy logic controller embedded in the TPSO algorithm, which is further called as Fuzzy Adaptive TPSO (FATPSO). We evaluated the performance of FATPSO and compared it with the Standard PSO (SPSO), Genetic Algorithm (GA) and Simulated Annealing (SA). The comparison was performed on a suite of 10 widely used benchmark problems for 30 and 100 dimensions. Empirical results illustrate that the FATPSO could prevent premature convergence very effectively and it clearly outperforms SPSO and GA.
منابع مشابه
Adaptive particularly tunable fuzzy particle swarm optimization algorithm
Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...
متن کاملMulti-objective Particle Swarm Optimisation for Alloy Toughness Design Using a Fuzzy Predictive Model
Alloy design is a challenging multi-objective optimisation problem, which consists of finding the optimal processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels. In this paper, we combine fuzzy modelling and Particle Swarm Optimisation (PSO) to address the multi-objective optimal alloy design problem. An adaptive weighted...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کاملDesigning an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کاملLearning of fuzzy-behaviours using Particle Swarm Optimisation in behaviour-based mobile robot
Behaviour-based mobile robots should have an ideal controller to generate perfect behaviour action. A schema to overcome these problems is provided, known as Fuzzy Behaviour-based robot. However, tuning fuzzy parameters is not a simple effort. This paper presents a technique to tune automatically fuzzy Rule Bases and fuzzy Membership Functions (MF) by Particle Swarm Optimisation (PSO), named as...
متن کامل