A fuzzy adaptive turbulent particle swarm optimisation

نویسندگان

  • Hongbo Liu
  • Ajith Abraham
  • Weishi Zhang
  • W. Zhang
چکیده

Particle Swarm Optimisation (PSO) algorithm is a stochastic search technique, which has exhibited good performance across a wide range of applications. However, very often for multimodal problems involving high dimensions, the algorithm tends to suffer from premature convergence. Analysis of the behaviour of the particle swarm model reveals that such premature convergence is mainly due to the decrease of velocity of particles in the search space that leads to a total implosion and ultimately fitness stagnation of the swarm. This paper introduces Turbulence in the Particle Swarm Optimisation (TPSO) algorithm to overcome the problem of stagnation. The algorithm uses a minimum velocity threshold to control the velocity of particles. The parameter, minimum velocity threshold of the particles is tuned adaptively by a fuzzy logic controller embedded in the TPSO algorithm, which is further called as Fuzzy Adaptive TPSO (FATPSO). We evaluated the performance of FATPSO and compared it with the Standard PSO (SPSO), Genetic Algorithm (GA) and Simulated Annealing (SA). The comparison was performed on a suite of 10 widely used benchmark problems for 30 and 100 dimensions. Empirical results illustrate that the FATPSO could prevent premature convergence very effectively and it clearly outperforms SPSO and GA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive particularly tunable fuzzy particle swarm optimization algorithm

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...

متن کامل

Multi-objective Particle Swarm Optimisation for Alloy Toughness Design Using a Fuzzy Predictive Model

Alloy design is a challenging multi-objective optimisation problem, which consists of finding the optimal processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels. In this paper, we combine fuzzy modelling and Particle Swarm Optimisation (PSO) to address the multi-objective optimal alloy design problem. An adaptive weighted...

متن کامل

Direct adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization

In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...

متن کامل

Designing an adaptive fuzzy control for robot manipulators using PSO

This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...

متن کامل

Learning of fuzzy-behaviours using Particle Swarm Optimisation in behaviour-based mobile robot

Behaviour-based mobile robots should have an ideal controller to generate perfect behaviour action. A schema to overcome these problems is provided, known as Fuzzy Behaviour-based robot. However, tuning fuzzy parameters is not a simple effort. This paper presents a technique to tune automatically fuzzy Rule Bases and fuzzy Membership Functions (MF) by Particle Swarm Optimisation (PSO), named as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007